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We present an adaptive cross-correlation algorithm for a large dynamic range extended-scene Shack—
Hartmann wavefront sensor. We show that it accurately measures very fine image shifts over many pixels

under a variety of practical imaging conditions. © 2008 Optical Society of America
OCIS codes: 100.5070, 120.5050, 010.7350, 010.1080, 110.6770.

The Shack—Hartmann sensor (SHS) is an optical in-
strument widely used for wavefront sensing in opti-
cal testing and astronomical adaptive optics. In its
simplest form, an SHS consists of a lenslet array and
a detector. The conventional SHS uses a point source
such as a star, a laser, or a pinhole as its object. In
such a case, the image captured by a Shack—
Hartmann (SH) camera is an array of spots, each of
which is a point spread function of the associated len-
slet. The wavefront error incident on the lenslet ar-
ray produces position shifts of the spots, and the
overall wavefront error is determined from the val-
ues of those shifts. The spot locations are usually de-
termined by calculating the centroid (center of mass)
of the spot images [1].

In some applications, such as solar telescopes [2],
remote imaging along short horizontal or slant paths
from the ground [3], and remote imaging from space,
a point source is not available, but an extended scene
is. In such a case, the lenslet array forms an array of
subimages or cells at the detector. The incident wave-
front error causes the subimages to shift; therefore,
the wavefront error can be determined by estimating
the shifts of all the subimages from their original po-
sitions. This is essentially a problem of image regis-
tration or aligning two images with each other, which
is solved using cross-correlation [4] when the allow-
able transformations include a small range of rigid
transformations (translation, rotation, and scale
changes). In this approach, one typically computes
the cross-correlation (CC) between target and refer-
ence images and determines the values of transfor-
mation parameters from the location of the CC peak.
Indeed, Rimmele and Radick used a correlation tech-
nique referred to as “correlating Shack—Hartmann”
for wavefront sensing using images of solar granula-
tion in an extended-scene SHS (ES-SHS) [2]. This
technique was further investigated by other re-
searchers for arbitrary scene content having different
illumination and noise levels [3,5,6]. Recently, Knuts-
son and Petersen proposed a new approach that esti-
mates the shift based on the phase of two images’
cross-correlation spectrum [7]. The studies men-
tioned above are restricted to situations where each
lenslet image is shifted but not distorted and the mu-
tual shift between two images is less than one pixel.

0146-9592/08/030213-3/$15.00

Shift estimation is limited by errors due to the wrap-
around of pixels in the localization of CC peak. Esti-
mation accuracy is also reduced when the two images
are distorted with respect to each other, because the
peak location of the CC function becomes obscured.
The technique proposed in [7] uses a single phase
slope-fitting iteration and thus can suffer from low
accuracy when the shift is large and/or the image is
distorted, as in the case of slant path imaging where
the lenslet images are distorted by anisoplanatism
effects.

We have developed a new algorithm for ES-SHS
that works for large dynamic range (shifts of up to
several pixels) and for distorted images. It is also
based on the phase of CC spectrum as proposed in
[7], but it carries out the phase slope-fitting process
in an iterative or adaptive manner and avoids pixel
wraparound errors by using a larger subimage size
for image shifting and a smaller subimage size for
phase slope fitting. We call this algorithm an adap-
tive cross-correlation (ACC) algorithm. In this paper,
we describe the ACC algorithm in detail first. Then
we explain the trade-off between the computation
cost and the shift estimate accuracy using measured
data. In the end we compare the performance of the
ACC algorithm when used with a point source and an
extended scene.

Throughout the process of algorithm development,
we worked with real image data measured in our
ES-SHS testbed. The extended scene was a chrome
bar target on a glass. Figure 1(a) is an example of the
extended-scene image cells used to test the current
algorithm. Details of this deformable-mirror (DM)
based ES-SHS testbed and additional information on
the experimental verification of this new ACC algo-
rithm are presented elsewhere [8].

The ACC algorithm estimates the shift between
two subimages or cells with the following steps:

(1) Choose an N X N pixel test cell, S;(x,y), from the
center of a lenslet image, as shown with a white
frame in Fig. 1(b), and compute its Fourier trans-

form, S,(u,v). Also, choose an M X M pixel reference
cell, r(x,y), and compute its Fourier transform,
r(u,v), where M<N and both are preferentially a
power of 2 for this algorithm. The r(x,y) should be
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Fig. 1. (a) SH extended-scene subimage array obtained
with a bar target on our SH wavefront sensor testbed. (b)
One 64 X 64 pixel subimage of the SH extended scene. The
white frame shows a 32 X 32 pixel (N =32) subaperture, and
the black frame shows a 16 X 16 pixel (M =16) subaperture.
These subapertures are referred to as big and small cells,
respectively, in this paper.

chosen from the same frame as S;(x,y) but from a dif-
ferent lenslet image, preferably near the center of the
whole image. An M XM cell is shown with a black
frame in Fig. 1(b). Each lenslet image is approxi-
mately 65X 65 pixels on our testbed. Therefore, we
chose N=32 and M =16 to test our algorithm.

(2) Obtain a small test cell pair, s;(x,y) and §;(u,v),
where s;(x,y) is equal to the central M X M pixel por-
tion of S;(x,y) and §;(u,v) is its Fourier transform.
Multiply 7*(u,v) and §;(z,v) to obtain a CC function
in the Fourier domain, ¢;(u,v)=7F*(u,v)$;(u,v), where
* denotes a complex conjugate. After that obtain the
phase function ¢;(u,v) of ¢;(u,v).

(3) Fit u and v slopes, a and b, to ¢;(u,v) over a
small {u,v} subdomain using a standard least-square
fit algorithm. The digitized version of ¢;(u,v),
¢;(n,m), is also 16X 16 pixels in size, with n
=1,2,...,16 and m=1,2,...,16, respectively. Its cen-
ter is at n=m=9. We used eight frequency compo-
nents of ¢;(n,m) for slope fitting, with n=9,10,11
and m=9,10,11, but excluding n=m=9. As pointed
out by [7] and some references therein, the above
choice has the advantages of being the least sensitive
to aliasing and leaving the low-spatial-frequency,
high-contrast components in the image but rejecting
the high-spatial-frequency, low signal-to-noise ratio
components completely from the shift estimate.

(4) Multiply S;(uz,v) by exp[—j2m(au+bv)], where a
and b are phase slopes obtained in Step 3. After that
compute the inverse fast Fourier transform (IFFT) of
this product. This step is equivalent to shifting
S;(x,y) so that its position aligns to that of the refer-
ence cell.

(5) Repeat Steps 2 through 4 in an iteration loop
while accumulating a and b, until a maximum itera-
tion number is reached or the change in image shift
becomes smaller than a predetermined tolerance.

As we can see from Steps 2 and 4 above, a big cell is
used for image shifting, and a small one for slope fit-
ting. As mentioned before, this prevents the central
M X M pixel portion of each cell from getting wrap-
around error and also speeds up the calculation pro-
cess. It should be noted that #(x,v) needs to be calcu-

lated only once for each SH image, and S;(u«,v) needs
to be calculated only once for each test cell. As com-
pared with other CC techniques, such as periodic cor-
relation described in [5], the current approach is com-
putationally much slower. This is because the main
computational burden comes from 2D FFT and IFFT
operations, and the ACC algorithm uses such opera-
tions more times than the periodic correlation. The
exact difference in the computation time between
these two algorithms depends on the total number of
phase slope-fitting iterations used in the ACC algo-
rithm.

There is a trade-off between the computation cost
and the shift estimate accuracy of the ACC algo-
rithm. Both of these factors also depend on the scene
content, the image distortion level, the noise, and the
illumination levels, and the amount of shift between
a test cell and its reference. To understand such a
trade-off of the ACC algorithm under a realistic con-
dition, we took six frames of extended-scene signal
images (Fig. 1) using different amounts of integration
time. For the convenience of our discussion below, we
will identify those frames with t=¢;,[=1,2,...,6. The
gray-level ranges of the corresponding small (16
X 16 pixel) test cells increased by a factor of more
than 2 when the exposure time was increased from
its minimum value (¢=¢;) to the maximum (¢=tg).
Also, in the last two cases of exposure time, some pix-
els of the small test cells got saturated. From each of
those frames, we chose one reference cell, r'i(x,y),
and 10 test cells, S¥(x,y) with i=1,2,...,10, such
that they are separated from each other by at least
five lenslet images. The mean (in terms of ;) intrinsic
shifts of those 10 cells relative to the reference cell
ranged from 0.20 to 0.82 pixels. Also, to obtain test
cells with shifts larger than 1 pixel, we moved the
white frame in Fig. 1(b) horizontally to the right to
obtain GY,(x,y)=S!(x—kAx,y), where Ax is the width
of each pixel and £=0,1,2,3. It should be empha-
sized that the G¥%(x,y) cells obtained with different %
values have not only different shifts but also slightly
different structures due to the differences in the im-
age textures of different lenslet images. In this way,
we obtained 60 test cells for each % value (6 in ¢; and
10 in 7) to test the accuracy and speed of the ACC al-
gorithm.

Figure 2(a) shows the shift estimate error as a
function of actual shift obtained with three different
values of shift-finding tolerance, and Fig. 2(b) shows
the mean numbers of iterations required to achieve
the estimate accuracy shown in Fig. 2(a). The error
bars in Fig. 2(a) represent the standard deviation of
the 60 estimate error values. The actual shift in Fig.
2 is defined as (Adact)ik_(Adact)iO with (Adact)ik
= \/(6x,~0—kAx)2+ dy%, and the estimate error is
(Adest)ik_(Adact)ik with (Adest)ik= A} &’szk+ ‘?yizkv where
(&3, dy;z) is the shift estimate output of the ACC al-
gorithm. As we can see, it takes only four iterations
on the average to achieve 0.01 pixel estimate accu-
racy under the current experimental conditions. Al-
though not shown here, we also obtained the esti-
mate error and the mean number of iterations as a
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Fig. 2. (Color online) Comparison of (a) estimate errors

and (b) average numbers of iterations corresponding to dif-
ferent image-shifting tolerances. The error bars in (a) cor-
respond to the standard deviation of the estimate errors ob-
tained from the 60 different images. See the main text for
more information.

function of integration time for the case of tolerance
=0.01 pixels. We had 40 data points for each ¢; in this
case (4 in £ and 10 in i) and obtained peak-to-valley
values of 0.004 pixels (mean error), 0.002 pixels (er-
ror standard deviation), and 1 (mean number of it-
erations). These results clearly show that (i) the esti-
mate error is more or less stable whatever the actual
shift is thanks to the iterative nature of the ACC, (i1)
the number of iterations does not increase with the
actual shift, and (iii) both the estimate error and the
number of iterations are not sensitive to the signal
level within the range considered in this paper. These
are some of the most significant advantages of the
ACC algorithm.

Figure 3 is an example of the wavefront estimates
from the ACC algorithm when applied to a spot im-
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Fig. 3. (Color online) Comparison of OPD maps recon-
structed from the offsets of subimages measured with a
point source and a bar target extended scene, respectively.
The units of the color-bar label are nanometers. The “F” let-
ter pattern in each OPD map was produced by poking the
appropriate actuators on the DM.
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age and an extended-scene image, respectively. Here
we poked the appropriate actuators on the DM to
produce an “F” letter pattern first, then obtained the
SH images of a point source and the extended scene,
and after that processed the two images with the
ACC algorithm to obtain the corresponding subimage
offsets. The DM has 32X 32 actuators with a 1 mm
spacing, and the width of each camera pixel is 5 um.
Therefore, the actuator distance on the SH camera
image is 200 pixels. Finally we reconstructed the op-
tical path difference (OPD) maps corresponding to
these two sets of subimage offsets using a Zernike-
mode-based wavefront reconstructor. The left-hand
portion of Fig. 3 is the result of the point source, and
the right-hand portion corresponds to the extended
scene. As we can see, the OPD maps of these two
cases are almost identical. The difference near the
right-hand edges of the OPD windows is probably
caused by vignetting [8] of the subimages in those ar-
eas. To obtain a more quantitative comparison, we
first calculated the histograms of the shift estimates,
Hg,, and Hy,,,, respectively, for the two cases with a
bin of 0.02 pixels and for a range of 0-0.24 pixels.
Then we calculated the percentage error of the two
histograms, Ey=100X (H,o—Heene)/Hgpor. The ob-
tained maximum and mean values of Eg are 9.1%
and 3.0%, respectively. That is, the difference in the
shift estimates is small.

In conclusion, we have developed an ACC algo-
rithm for a Shack—Hartmann wavefront sensor. It is
based on the phase of the CC spectrum of two image
cells. Working with measured image cells having
multipixel image shifts and different signal levels, we
have shown that the ACC algorithm can yield image
shift estimates with high subpixel accuracy, such as
0.01 pixel, and its accuracy and computation time
vary very little with the amount of actual shift up to
more than 3 pixels as well as with the signal level.
We expect that this algorithm will serve as an alter-
native to the existing image registration methods. We
also expect it to become widely useful in both calibra-
tion and normal operation of large dynamic range SH
wavefront sensing and control systems, including
those used in ground- and space-based telescopes.
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